Tuesday, June 17, 2014

How Acoustic Sound Panels For Churches Work

Tags

By Ina Hunt


Music and speech are both improved by a small amount of reverberation, but at higher levels it can make both seem annoying and garbled. The choir and sermon are an integral part of many services, but become meaningless when the congregation is unable to hear singing or distinguish words normally. Acoustic sound panels for churches focus amplified waves and natural vibrations, making them more meaningful and pleasant to listeners.

Although some European Gothic cathedrals are famous for their signature echoes, there is a distinct line separating reverberation from garbled, irritating noise. Echoes occur because individual waves repeatedly bounce back and forth between ceilings and walls. While some building plans include acoustic accuracy, many houses of worship today exist in structures originally intended for other uses.

Even without the benefit of modern computer analysis, there have been several methods historically used to correct the problem. Some included the addition of ash to clay pots located at strategic points withing a room. They were moved about, and burnt material was added or removed to dampen specific reverberations. Support pillars that dominated some buildings were specifically altered, and stone blocks specially sized to inhibit echo.

Today, solutions range from installing carpeting in strategic areas to using high-tech electronic reverberation systems that create a variety of listening environments. Both are effective, but neither can completely solve echo or muffling problems that are actually a product of the original building design. For many structures, a mixture of methods that also emphasizes special flat baffles creates the best results.

Rather than cutting out certain frequencies, these baffles absorb unwanted reflections, often within a particular room. They all incorporate a common design approach, using a frame that houses a filling of absorbent material, covered by a variety of decorative possibilities. The interior is most often filled with fiberglass or foam, and there are less environmentally toxic fillers also available.

Dimensions are dictated by the amount of distortion or echo. Some may be as large as an entire wall or ceiling, while others only cover a four square foot area. Regardless of size, each allows waves to pass through rather than bouncing off a hard surface, and any returning echo is re-absorbed. This method uses the same principles as music studios to reproduce vocal and instrumental tones accurately.

Far from appearing to be an industrial or high-tech intrusion, these structures easily blend with most modern church decors. They can mirror the patterns and colors of existing stained glass, or can tie a room together by adopting patterns or colors on existing walls and ceilings. While a plain baffle is not particularly attractive, in many cases they end up looking like a part of the intended interior design.

It is possible to precisely arrange them in the best possible positions using digital analysis, but diffusion and absorption is often best measured by the most effective tool of all, human hearing. Once the best configuration has been discovered, units can be positioned permanently. Instead of preventing certain frequency ranges or cutting down the volume, they make both speech and music sound clean and clear.




About the Author:




EmoticonEmoticon